Serveur d'exploration sur le phanerochaete

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Cloning, expression and characterization of an aryl-alcohol dehydrogenase from the white-rot fungus Phanerochaete chrysosporium strain BKM-F-1767.

Identifieur interne : 000459 ( Main/Exploration ); précédent : 000458; suivant : 000460

Cloning, expression and characterization of an aryl-alcohol dehydrogenase from the white-rot fungus Phanerochaete chrysosporium strain BKM-F-1767.

Auteurs : Dong-Dong Yang [France] ; Jean Marie François ; Gustavo M. De Billerbeck

Source :

RBID : pubmed:22742413

Descripteurs français

English descriptors

Abstract

BACKGROUND

The white-rot fungus Phanerochaete chrysosporium is among the small group of fungi that can degrade lignin to carbon dioxide while leaving the crystalline cellulose untouched. The efficient lignin oxidation system of this fungus requires cyclic redox reactions involving the reduction of aryl-aldehydes to the corresponding alcohols by aryl-alcohol dehydrogenase. However, the biochemical properties of this enzyme have not been extensively studied. These are of most interest for the design of metabolic engineering/synthetic biology strategies in the field of biotechnological applications of this enzyme.

RESULTS

We report here the cloning of an aryl-alcohol dehydrogenase cDNA from the white-rot fungus Phanerochaete chrysosporium, its expression in Escherichia coli and the biochemical characterization of the encoded GST and His6 tagged protein. The purified recombinant enzyme showed optimal activity at 37°C and at pH 6.4 for the reduction of aryl- and linear aldehydes with NADPH as coenzyme. NADH could also be the electron donor, while having a higher Km (220 μM) compared to that of NADPH (39 μM). The purified recombinant enzyme was found to be active in the reduction of more than 20 different aryl- and linear aldehydes showing highest specificity for mono- and dimethoxylated Benzaldehyde at positions 3, 4, 3,4 and 3,5. The enzyme was also capable of oxidizing aryl-alcohols with NADP(+) at 30°C and an optimum pH of 10.3 but with 15 to 100-fold lower catalytic efficiency than for the reduction reaction.

CONCLUSIONS

In this work, we have characterized the biochemical properties of an aryl-alcohol dehydrogenase from the white-rot fungus Phanerochaete chrysosporium. We show that this enzyme functions in the reductive sense under physiological conditions and that it displays relatively large substrate specificity with highest activity towards the natural compound Veratraldehyde.


DOI: 10.1186/1471-2180-12-126
PubMed: 22742413
PubMed Central: PMC3507735


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Cloning, expression and characterization of an aryl-alcohol dehydrogenase from the white-rot fungus Phanerochaete chrysosporium strain BKM-F-1767.</title>
<author>
<name sortKey="Yang, Dong Dong" sort="Yang, Dong Dong" uniqKey="Yang D" first="Dong-Dong" last="Yang">Dong-Dong Yang</name>
<affiliation wicri:level="3">
<nlm:affiliation>Université de Toulouse; INSA, UPS, INP; LISBP, 135 Avenue de Rangueil, Toulouse, F-31077, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Université de Toulouse; INSA, UPS, INP; LISBP, 135 Avenue de Rangueil, Toulouse, F-31077</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Occitanie (région administrative)</region>
<region type="old region" nuts="2">Midi-Pyrénées</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Francois, Jean Marie" sort="Francois, Jean Marie" uniqKey="Francois J" first="Jean Marie" last="François">Jean Marie François</name>
</author>
<author>
<name sortKey="De Billerbeck, Gustavo M" sort="De Billerbeck, Gustavo M" uniqKey="De Billerbeck G" first="Gustavo M" last="De Billerbeck">Gustavo M. De Billerbeck</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2012">2012</date>
<idno type="RBID">pubmed:22742413</idno>
<idno type="pmid">22742413</idno>
<idno type="doi">10.1186/1471-2180-12-126</idno>
<idno type="pmc">PMC3507735</idno>
<idno type="wicri:Area/Main/Corpus">000418</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000418</idno>
<idno type="wicri:Area/Main/Curation">000418</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000418</idno>
<idno type="wicri:Area/Main/Exploration">000418</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Cloning, expression and characterization of an aryl-alcohol dehydrogenase from the white-rot fungus Phanerochaete chrysosporium strain BKM-F-1767.</title>
<author>
<name sortKey="Yang, Dong Dong" sort="Yang, Dong Dong" uniqKey="Yang D" first="Dong-Dong" last="Yang">Dong-Dong Yang</name>
<affiliation wicri:level="3">
<nlm:affiliation>Université de Toulouse; INSA, UPS, INP; LISBP, 135 Avenue de Rangueil, Toulouse, F-31077, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Université de Toulouse; INSA, UPS, INP; LISBP, 135 Avenue de Rangueil, Toulouse, F-31077</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Occitanie (région administrative)</region>
<region type="old region" nuts="2">Midi-Pyrénées</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Francois, Jean Marie" sort="Francois, Jean Marie" uniqKey="Francois J" first="Jean Marie" last="François">Jean Marie François</name>
</author>
<author>
<name sortKey="De Billerbeck, Gustavo M" sort="De Billerbeck, Gustavo M" uniqKey="De Billerbeck G" first="Gustavo M" last="De Billerbeck">Gustavo M. De Billerbeck</name>
</author>
</analytic>
<series>
<title level="j">BMC microbiology</title>
<idno type="eISSN">1471-2180</idno>
<imprint>
<date when="2012" type="published">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Alcohol Oxidoreductases (chemistry)</term>
<term>Alcohol Oxidoreductases (genetics)</term>
<term>Alcohol Oxidoreductases (metabolism)</term>
<term>Aldehydes (metabolism)</term>
<term>Cloning, Molecular (MeSH)</term>
<term>Coenzymes (metabolism)</term>
<term>Enzyme Stability (MeSH)</term>
<term>Escherichia coli (genetics)</term>
<term>Gene Expression (MeSH)</term>
<term>Hydrogen-Ion Concentration (MeSH)</term>
<term>NAD (metabolism)</term>
<term>NADP (metabolism)</term>
<term>Phanerochaete (enzymology)</term>
<term>Phanerochaete (genetics)</term>
<term>Recombinant Proteins (chemistry)</term>
<term>Recombinant Proteins (genetics)</term>
<term>Recombinant Proteins (isolation & purification)</term>
<term>Recombinant Proteins (metabolism)</term>
<term>Substrate Specificity (MeSH)</term>
<term>Temperature (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Alcohol oxidoreductases (composition chimique)</term>
<term>Alcohol oxidoreductases (génétique)</term>
<term>Alcohol oxidoreductases (métabolisme)</term>
<term>Aldéhydes (métabolisme)</term>
<term>Clonage moléculaire (MeSH)</term>
<term>Coenzymes (métabolisme)</term>
<term>Concentration en ions d'hydrogène (MeSH)</term>
<term>Escherichia coli (génétique)</term>
<term>Expression des gènes (MeSH)</term>
<term>NAD (métabolisme)</term>
<term>NADP (métabolisme)</term>
<term>Phanerochaete (enzymologie)</term>
<term>Phanerochaete (génétique)</term>
<term>Protéines recombinantes (composition chimique)</term>
<term>Protéines recombinantes (génétique)</term>
<term>Protéines recombinantes (isolement et purification)</term>
<term>Protéines recombinantes (métabolisme)</term>
<term>Spécificité du substrat (MeSH)</term>
<term>Stabilité enzymatique (MeSH)</term>
<term>Température (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Alcohol Oxidoreductases</term>
<term>Recombinant Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Alcohol Oxidoreductases</term>
<term>Recombinant Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="isolation & purification" xml:lang="en">
<term>Recombinant Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Alcohol Oxidoreductases</term>
<term>Aldehydes</term>
<term>Coenzymes</term>
<term>NAD</term>
<term>NADP</term>
<term>Recombinant Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Alcohol oxidoreductases</term>
<term>Protéines recombinantes</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Phanerochaete</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Phanerochaete</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Escherichia coli</term>
<term>Phanerochaete</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Alcohol oxidoreductases</term>
<term>Escherichia coli</term>
<term>Phanerochaete</term>
<term>Protéines recombinantes</term>
</keywords>
<keywords scheme="MESH" qualifier="isolement et purification" xml:lang="fr">
<term>Protéines recombinantes</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Alcohol oxidoreductases</term>
<term>Aldéhydes</term>
<term>Coenzymes</term>
<term>NAD</term>
<term>NADP</term>
<term>Protéines recombinantes</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Cloning, Molecular</term>
<term>Enzyme Stability</term>
<term>Gene Expression</term>
<term>Hydrogen-Ion Concentration</term>
<term>Substrate Specificity</term>
<term>Temperature</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Clonage moléculaire</term>
<term>Concentration en ions d'hydrogène</term>
<term>Expression des gènes</term>
<term>Spécificité du substrat</term>
<term>Stabilité enzymatique</term>
<term>Température</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>BACKGROUND</b>
</p>
<p>The white-rot fungus Phanerochaete chrysosporium is among the small group of fungi that can degrade lignin to carbon dioxide while leaving the crystalline cellulose untouched. The efficient lignin oxidation system of this fungus requires cyclic redox reactions involving the reduction of aryl-aldehydes to the corresponding alcohols by aryl-alcohol dehydrogenase. However, the biochemical properties of this enzyme have not been extensively studied. These are of most interest for the design of metabolic engineering/synthetic biology strategies in the field of biotechnological applications of this enzyme.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>RESULTS</b>
</p>
<p>We report here the cloning of an aryl-alcohol dehydrogenase cDNA from the white-rot fungus Phanerochaete chrysosporium, its expression in Escherichia coli and the biochemical characterization of the encoded GST and His6 tagged protein. The purified recombinant enzyme showed optimal activity at 37°C and at pH 6.4 for the reduction of aryl- and linear aldehydes with NADPH as coenzyme. NADH could also be the electron donor, while having a higher Km (220 μM) compared to that of NADPH (39 μM). The purified recombinant enzyme was found to be active in the reduction of more than 20 different aryl- and linear aldehydes showing highest specificity for mono- and dimethoxylated Benzaldehyde at positions 3, 4, 3,4 and 3,5. The enzyme was also capable of oxidizing aryl-alcohols with NADP(+) at 30°C and an optimum pH of 10.3 but with 15 to 100-fold lower catalytic efficiency than for the reduction reaction.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSIONS</b>
</p>
<p>In this work, we have characterized the biochemical properties of an aryl-alcohol dehydrogenase from the white-rot fungus Phanerochaete chrysosporium. We show that this enzyme functions in the reductive sense under physiological conditions and that it displays relatively large substrate specificity with highest activity towards the natural compound Veratraldehyde.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">22742413</PMID>
<DateCompleted>
<Year>2013</Year>
<Month>05</Month>
<Day>14</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">1471-2180</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>12</Volume>
<PubDate>
<Year>2012</Year>
<Month>Jun</Month>
<Day>28</Day>
</PubDate>
</JournalIssue>
<Title>BMC microbiology</Title>
<ISOAbbreviation>BMC Microbiol</ISOAbbreviation>
</Journal>
<ArticleTitle>Cloning, expression and characterization of an aryl-alcohol dehydrogenase from the white-rot fungus Phanerochaete chrysosporium strain BKM-F-1767.</ArticleTitle>
<Pagination>
<MedlinePgn>126</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1186/1471-2180-12-126</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">The white-rot fungus Phanerochaete chrysosporium is among the small group of fungi that can degrade lignin to carbon dioxide while leaving the crystalline cellulose untouched. The efficient lignin oxidation system of this fungus requires cyclic redox reactions involving the reduction of aryl-aldehydes to the corresponding alcohols by aryl-alcohol dehydrogenase. However, the biochemical properties of this enzyme have not been extensively studied. These are of most interest for the design of metabolic engineering/synthetic biology strategies in the field of biotechnological applications of this enzyme.</AbstractText>
<AbstractText Label="RESULTS" NlmCategory="RESULTS">We report here the cloning of an aryl-alcohol dehydrogenase cDNA from the white-rot fungus Phanerochaete chrysosporium, its expression in Escherichia coli and the biochemical characterization of the encoded GST and His6 tagged protein. The purified recombinant enzyme showed optimal activity at 37°C and at pH 6.4 for the reduction of aryl- and linear aldehydes with NADPH as coenzyme. NADH could also be the electron donor, while having a higher Km (220 μM) compared to that of NADPH (39 μM). The purified recombinant enzyme was found to be active in the reduction of more than 20 different aryl- and linear aldehydes showing highest specificity for mono- and dimethoxylated Benzaldehyde at positions 3, 4, 3,4 and 3,5. The enzyme was also capable of oxidizing aryl-alcohols with NADP(+) at 30°C and an optimum pH of 10.3 but with 15 to 100-fold lower catalytic efficiency than for the reduction reaction.</AbstractText>
<AbstractText Label="CONCLUSIONS" NlmCategory="CONCLUSIONS">In this work, we have characterized the biochemical properties of an aryl-alcohol dehydrogenase from the white-rot fungus Phanerochaete chrysosporium. We show that this enzyme functions in the reductive sense under physiological conditions and that it displays relatively large substrate specificity with highest activity towards the natural compound Veratraldehyde.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Yang</LastName>
<ForeName>Dong-Dong</ForeName>
<Initials>DD</Initials>
<AffiliationInfo>
<Affiliation>Université de Toulouse; INSA, UPS, INP; LISBP, 135 Avenue de Rangueil, Toulouse, F-31077, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>François</LastName>
<ForeName>Jean Marie</ForeName>
<Initials>JM</Initials>
</Author>
<Author ValidYN="Y">
<LastName>de Billerbeck</LastName>
<ForeName>Gustavo M</ForeName>
<Initials>GM</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2012</Year>
<Month>06</Month>
<Day>28</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>BMC Microbiol</MedlineTA>
<NlmUniqueID>100966981</NlmUniqueID>
<ISSNLinking>1471-2180</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000447">Aldehydes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D003067">Coenzymes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011994">Recombinant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0U46U6E8UK</RegistryNumber>
<NameOfSubstance UI="D009243">NAD</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>53-59-8</RegistryNumber>
<NameOfSubstance UI="D009249">NADP</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.1.-</RegistryNumber>
<NameOfSubstance UI="D000429">Alcohol Oxidoreductases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.1.1.90</RegistryNumber>
<NameOfSubstance UI="C055882">aryl-alcohol dehydrogenase</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000429" MajorTopicYN="N">Alcohol Oxidoreductases</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000447" MajorTopicYN="N">Aldehydes</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003001" MajorTopicYN="N">Cloning, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003067" MajorTopicYN="N">Coenzymes</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004795" MajorTopicYN="N">Enzyme Stability</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004926" MajorTopicYN="N">Escherichia coli</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015870" MajorTopicYN="N">Gene Expression</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006863" MajorTopicYN="N">Hydrogen-Ion Concentration</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009243" MajorTopicYN="N">NAD</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009249" MajorTopicYN="N">NADP</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020075" MajorTopicYN="N">Phanerochaete</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="Y">enzymology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011994" MajorTopicYN="N">Recombinant Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000302" MajorTopicYN="N">isolation & purification</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013379" MajorTopicYN="N">Substrate Specificity</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013696" MajorTopicYN="N">Temperature</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2012</Year>
<Month>02</Month>
<Day>01</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2012</Year>
<Month>04</Month>
<Day>16</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2012</Year>
<Month>6</Month>
<Day>30</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2012</Year>
<Month>6</Month>
<Day>30</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2013</Year>
<Month>5</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">22742413</ArticleId>
<ArticleId IdType="pii">1471-2180-12-126</ArticleId>
<ArticleId IdType="doi">10.1186/1471-2180-12-126</ArticleId>
<ArticleId IdType="pmc">PMC3507735</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Biochim Biophys Acta. 2000 Aug 31;1481(1):202-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10962107</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2012 Jan;40(Database issue):D290-301</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22127870</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2004 Jun;22(6):695-700</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15122302</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 1979 Feb 1;177(2):595-601</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">35157</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2002 Jan 1;361(Pt 1):163-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11742541</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PCR Methods Appl. 1994 Aug;4(1):S40-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9018326</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1994 Aug;60(8):2811-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16349349</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2003;54:519-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14503002</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1994 Feb;60(2):709-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16349197</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1994 Nov 11;269(45):28152-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7961751</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int Microbiol. 2005 Sep;8(3):195-204</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16200498</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1983 Aug 12;221(4611):661-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17787736</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2001 Mar 9;1546(1):107-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11257513</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1994 Jun;60(6):1783-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8031078</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1990 Apr;87(8):2936-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11607073</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1999 Dec 17;274(51):36226-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10593910</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Steroid Biochem Mol Biol. 1992 Jan;41(1):29-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1734934</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 2002 Nov;269(22):5738-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12423374</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 1998 Oct 9;251(1):283-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9790947</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1987 May;169(5):2195-201</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3553159</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1988 Dec;85(23):8998-9002</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2461560</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 1991 Jan 30;195(2):369-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1997322</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1990 Oct 23;29(42):9947-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2125486</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fungal Genet Biol. 2007 Feb;44(2):77-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16971147</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 1976 May 7;72:248-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">942051</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Biol Interact. 2003 Feb 1;143-144:229-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12604208</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Biochem Biophys. 1985 Nov 1;242(2):329-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4062285</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 1997 Sep 15;326 ( Pt 3):625-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9307009</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1999 Mar 9;38(10):3205-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10074376</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 1991 Sep 15;278 ( Pt 3):835-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1898369</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Biol Interact. 2003 Feb 1;143-144:621-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12604248</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>France</li>
</country>
<region>
<li>Midi-Pyrénées</li>
<li>Occitanie (région administrative)</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="De Billerbeck, Gustavo M" sort="De Billerbeck, Gustavo M" uniqKey="De Billerbeck G" first="Gustavo M" last="De Billerbeck">Gustavo M. De Billerbeck</name>
<name sortKey="Francois, Jean Marie" sort="Francois, Jean Marie" uniqKey="Francois J" first="Jean Marie" last="François">Jean Marie François</name>
</noCountry>
<country name="France">
<region name="Occitanie (région administrative)">
<name sortKey="Yang, Dong Dong" sort="Yang, Dong Dong" uniqKey="Yang D" first="Dong-Dong" last="Yang">Dong-Dong Yang</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PhanerochaeteV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000459 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000459 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PhanerochaeteV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:22742413
   |texte=   Cloning, expression and characterization of an aryl-alcohol dehydrogenase from the white-rot fungus Phanerochaete chrysosporium strain BKM-F-1767.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:22742413" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PhanerochaeteV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Fri Nov 13 18:33:39 2020. Site generation: Fri Nov 13 18:35:20 2020